G_{Ep}-III in Hall C

Measurement of G_{Ep}/G_{Mp} to $Q^2=9~GeV^2$ via Recoil Polarization

Edward Brash
Christopher Newport University and JLab
Hall C Winter Workshop – January 25/26, 2007

Graduate Students - Andrew Puckett (MIT), Mehdi Meziane (W&M), Wei Luo (Lanzhuo University, China)

Overview of the Experiment

- Continuation of the very successful program in Hall A to higher momentum transfer
- Theories diverge from one another beyond the current data
- Experiment requires new EM Calorimeter (BigCal), a new scattering chamber, and a new FPP in the HMS spectrometer
- Also requires a new coincidence trigger, and an updated HMS trigger (with new SO scintillator)

Logistics

- This experiment will run simultaneously with the 2-Gamma Polarization experiment
- Three kinematics points 5.2, 7.0, 8.X GeV² the highest Q2 is sensitive to the available beam energy!
- The 2-Gamma experiment has three kinematic points, and together with a test point, we have seven positions of the calorimeter in the hall
- The distance from the target varies, depending on solid angle matching and angular resolution requirements

Logistics, cont'd

Kin.Setting	E _{beam} (GeV)	$Q^2 (GeV^2)$	$p_p (GeV/c)$	E _{scat} (GeV)	theta _e	t _p (GeV)	thetap	P_l	Pt	dp3 / dp4
1	2.528	2.700	2.1841	1.089	59.4	1.439	25.407	1877	0.8548	-0.91880
→ 2	4.045	5.200	3.5887	1.274	60.3	2.771	17.960	0637	0.9243	-0.96748
3	1.867	2.513	2.0752	0.528	106.0	1.339	14.155	1448	0.9776	-0.91119
4	2.839	2.500	2.0676	1.507	44.9	1.332	30.985	1928	0.7347	-0.91062
5	3.650	2.500	2.0676	2.318	31.5	1.332	35.905	1618	0.5782	-0.91062
→ 6	5.714	7.100	4.6277	1.930	47.3	3.784	17.853	0082	0.8860	-0.98006
→ 7	5.740	8.500	5.3868	1.210	67.2	4.530	11.950	0.0217	0.9681	-0.98517
→ 7	5.800	8.700	5.4949	1.164	69.2	4.636	11.417	0.0248	0.9722	-0.98573

Logistics, cont'd

- Major Challenges
 - Where do we place electronics racks and cable delay racks?
 - How do we maintain accessibility for all seven kinematics points?
 - How do we shield the electronics?
 - What sort of cable/dolly system might we use?

Experiment Trigger

- Installation of FPP requires removal of S2 scintillator layer
- Elastic kinematics means that "interesting" protons are confined to a small region of the focal plane
- New 50 scintillator 2 paddles (in x) with double end readout, to capture elastic + radiative tail
 - Scintillators and mounting frame have been constructed already
- HMS/BigCal trigger will be formed in the hall TS will be located in the hall, in the BigCal electronics racks - ongoing tests of this setup in the testlab
- Necessitates formation of HMS trigger in the HMS hut

HMS Flight Time	85 ns				
PM Transit	50 ns				
Cables to Crate	30 ns				
Trigger Formation	60 ns				
	215 ns				
Transit to BigCal	250 ns				
	465 ns				
Coincidence Trigger	30 ns				
TS	80 ns				
Total	575 ns				

Flight Time	20 ns			
PM Transit	30 ns			
Cable to Crate	40 ns			
MUX	15 ns			
Delay Cable	500 ns			
Total	605 ns			

Scattering Chamber

Focal Plane Polarimeter

Active Area: 166cm (V)
 x 132 cm (H)

Two Successive
 Polarimeters: CH₂
 Analyzer & two 3-layer
 Drift Chambers Each
 (UXV wire orientations)

FPP Testing in EEL

- All four chambers mounted horizontally for cosmic testing in FPP space frame
- Scintillator paddles mounted above and below to form trigger
- VME-based DAQ system, as will be used in the experiment
- · New JLab F1 TDC's
- Limited to one chamber pair at a time, currently; simple DAQ system only handles single VME crate readout

Plotted at 14.23.45 on 06/06/06 with Carfield version 7.10

Drift Simulations with Garfield

(Mehdi Meziane)

Positron drift lines from a wire

Drift Simulations with Garfield

Event Display - Individual Tracks

Drift Simulations with Garfield

- Tracking resolution is ~200 um or better ... this meets spec already
- Non-gaussian shape of resolution plots indicates further improvement may be possible ... work is ongoing

GEANT Simulation of FPP

- full description of new FPP chambers and analyzers in GEANT
- New implementation of a fully 3-D "conetest"
- Initial studies indicate that false asymmetries are significantly reduced

• < 10⁻³ asymmetries

Analysis of Simulated Tracks

- "golden" tracks from GEANT simulation
- Possible to turn on/off MS, energy loss, hadronic scattering
- Initial generation of "straight-thru" tracks (no MS/ELOSS/HADR)
- track parameters from simulation compared to those from FPP software

Summary and Outlook

- Performance of FPP at or beyond specs
- Tracking software is reaching final development stages (tests in EEL will continue ...)
- Full analysis software, and incorporation into the Hall C engine, will continue over the next several months
- Installation of FPP must come after small experiments test installation will expediate the process
- And now, on to the 2-Gamma experiment, and a full description of progress on BigCal ...